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De�nitions

A box B in Rd : [a1,b1]× . . .× [ad ,bd ].
dim(B) : number of non-trivial intervals [ai ,bi ].

Contact system B of boxes in Rd

A (�nite) set of d-dimensional boxes that are interior disjoint (i.e.

∀A,B ∈B we have dim(A∩B)< d).

Contact graph G (B)

A graph with vertex set B and where there is an edge AB if and

only if boxes A and B intersect.

Contact complex K (B)

A simplicial complex with vertex set B and where F ⊆B is a face if

and only if the boxes of F intersect.
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Dimension 1 and 2

In R1 :

K (B)=G (B) is a path forest

dimDM(G (B))= 2

In R2 :

Theorem (Thomassen '84)

G =G (B) for some B with no

4 boxes intersection ⇐⇒ G is a

proper subgraph of a 4-conn.

planar graph.

dimDM(G (B))= dimDM(K (B))≤ 3
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Dushnik-Miller dimension

Dushnik-Miller dimension of a simplicial complex

dimDM(K )= Min k s.t. ∃≤1 . . . ≤k total orders on V (K ) s.t.
∀F ∈K , ∀x ∈V (K ), ∃i s.t. F ≤i x (i .e.∀y ∈F y ≤i x)

Remark

dimDM(K )= dim(I (K )), where I (K ) is the inclusion poset of K .

Example : the path abcd :

≤1 : a≤1 b ≤1 c ≤1 d
≤2 : d ≤2 c ≤2 b ≤2 a

Example : Empty triangle & empty rectangle complexes

Theorem (Scarf '73, Ossona de Mendez '99)

Simplicial complexes of DM-dimension d linearly embed in Rd−1.
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Construction in R2 (from Schnyder Woods by Zhang '10)

≤3 : Any total order s.t.

B Acyclicity of ≤3 is not trivial !

Intersection btw 2 boxes

⇒ 1-dimensional

≤1 :

follow e1, and if =
A B C D E F G H

≤2 :

follow e2, and if =
H D E A F G C B
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⇒ x ≤3 y
B G H F {C ,E } D A
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Idea of the proof : singleton {X }
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If the corner of B is in Region(X ) : X ≤1 B
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Idea of the proof : pair {X ,Y }

X
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∀ {X ,Y } ∈K (B) ∀B ∈B ∃i s.t. X ,Y ≤i B
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How to generalize this ?

≤4 : Any total order s.t.

Y ∈ Region(X) ⇒ x ≤4 y

≤1 : follow e1, and ≤4 if =

≤2 : follow e2, and ≤4 if =

≤3 : follow e3, and ≤4 if =
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Main Theorem

�����
Theorem

Any contact system B of d-dimensional boxes in Rd with at most

d +1 boxes intersecting at a point veri�es dimDM(K (B))≤ d +1.

Theorem

For any tiling T of Rd with d-dimensional boxes, if T has only 2d
in�nite boxes and if at most d +1 boxes intersect at a point, then

T veri�es dimDM(K (T ))≤ d +1.

Thus no , nor in T .
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Proof Ideas

A tiling in Rd with only 2d in�nite boxes and with at most d +1

boxes at each point is a proper d-tiling.

Theorem

A d-tiling with 2d in�nite boxes is proper

⇐⇒ any 2 intersecting boxes intresect on a (d −1)-box.

⇐⇒ any k intersecting boxes intersect on a (d +1−k)−box .

(⇐=) follows from Graham-Pollak's Theorem.

Two sides s and s ′ are connected if there is a sequence

s = s1, . . . ,st = s ′ s.t. si ∩ si+1 is a (d −1)-box.

Lemma

Every maximal set of connected sides induces a (d −1)-box.
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1. Forget the 2d in�nite boxes.

2. Consider the highest box X in ≤d+1 & Remove it.

3. Prolong some boxes
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Open Problems

Question 1

For which contact systems C of d-boxes, dimDM(K (C ))≤ d +1 ?

Ï There exists contact systems C such that at most d +1 boxes

intersect at a point but such that dimDM(K (C ))> d +1.
Ï There exists contact systems C such that the intersection of

any k boxes is either empty or it has dimension d +1−k , and
such that C is not contained in any proper d-tiling.

Question 2

Given a contact systems C such that the intersection of any k
boxes is either empty or it has dimension d +1−k , does
dimDM(K (C ))≤ d +1.
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More Open Problems

Theorem (Thomassen '84)

K is a clique complex such that dimDM(K )≤ 3 ⇐⇒ there exists a

contact system C in R2 with no 4 boxes intersecting and such that

K =K (C ).

Question 3 : Does this holds ?

K is a clique complex such that dimDM(K )≤ d +1 ⇐⇒ there exists

a contact system C in Rd with no (d +2) boxes intersecting and

such that K =K (C ).

Question 4 : How to generalize the following Theorem?

Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

G is planar and bipartite ⇐⇒ G admits a contact system with

horizontal or vertical lines.
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