Dimension of contact systems of *d*-dimensional boxes

Mathew C. Francis & Daniel Gonçalves

Order & Geometry Sept. 2018

Definitions

A box B in \mathbb{R}^d : $[a_1, b_1] \times \ldots \times [a_d, b_d]$. dim(B): number of non-trivial intervals $[a_i, b_i]$.

Contact system \mathscr{B} of boxes in \mathbb{R}^d

A (finite) set of *d*-dimensional boxes that are interior disjoint (i.e. $\forall A, B \in \mathscr{B}$ we have $dim(A \cap B) < d$).

Definitions

A box B in \mathbb{R}^d : $[a_1, b_1] \times \ldots \times [a_d, b_d]$. dim(B): number of non-trivial intervals $[a_i, b_i]$.

Contact system \mathscr{B} of boxes in \mathbb{R}^d

A (finite) set of *d*-dimensional boxes that are interior disjoint (i.e. $\forall A, B \in \mathscr{B}$ we have $dim(A \cap B) < d$).

Contact graph $G(\mathscr{B})$

A graph with vertex set \mathscr{B} and where there is an edge AB if and only if boxes A and B intersect.

Definitions

A box B in \mathbb{R}^d : $[a_1, b_1] \times \ldots \times [a_d, b_d]$. dim(B): number of non-trivial intervals $[a_i, b_i]$.

Contact system \mathscr{B} of boxes in \mathbb{R}^d

A (finite) set of *d*-dimensional boxes that are interior disjoint (i.e. $\forall A, B \in \mathscr{B}$ we have $dim(A \cap B) < d$).

Contact graph $G(\mathscr{B})$

A graph with vertex set \mathscr{B} and where there is an edge AB if and only if boxes A and B intersect.

Contact complex $K(\mathcal{B})$

A simplicial complex with vertex set \mathscr{B} and where $F \subseteq \mathscr{B}$ is a face if and only if the boxes of F intersect.

ln \mathbb{R}^1 : $\mathcal{K}(\mathscr{B}) = \mathcal{G}(\mathscr{B})$ is a path forest

In \mathbb{R}^2 :

In \mathbb{R}^1 : $K(\mathscr{B}) = G(\mathscr{B})$ is a path forest

In \mathbb{R}^2 :

Dimension 1 and 2 $% \left({{\left({{{{\rm{T}}_{\rm{m}}}} \right)}_{\rm{max}}} \right)$

In \mathbb{R}^1 : $\mathcal{K}(\mathscr{B}) = \mathcal{G}(\mathscr{B})$ is a path forest

Theorem (Thomassen '84)

 $G = G(\mathscr{B})$ for some \mathscr{B} with no 4 boxes intersection $\iff G$ is a proper subgraph of a 4-conn. planar graph.

In \mathbb{R}^1 : $\mathcal{K}(\mathscr{B}) = \mathcal{G}(\mathscr{B})$ is a path forest

Theorem (Thomassen '84)

 $K = K(\mathscr{B})$ for some \mathscr{B} with no 4 boxes intersection $\iff K$ is a *clique complex* and *embeds* in the plane.

Dimension 1 and 2 $% \left({{\left({{{{\rm{T}}_{\rm{m}}}} \right)}_{\rm{max}}} \right)$

In \mathbb{R}^1 : $\mathcal{K}(\mathscr{B}) = \mathcal{G}(\mathscr{B})$ is a path forest

$dim_{DM}(G(\mathcal{B}))=2$

In \mathbb{R}^2 :

Theorem (Thomassen '84)

 $K = K(\mathscr{B})$ for some \mathscr{B} with no 4 boxes intersection $\iff K$ is a *clique complex* and *embeds* in the plane.

 $dim_{DM}(G(\mathscr{B})) = dim_{DM}(K(\mathscr{B})) \leq 3$

Dushnik-Miller dimension

Dushnik-Miller dimension of a simplicial complex

 $\dim_{DM}(K) = \text{Min } k \text{ s.t. } \exists \leq_1 \dots \leq_k \text{ total orders on } V(K) \text{ s.t.} \\ \forall F \in K, \forall x \in V(K), \exists i \text{ s.t. } F \leq_i x \qquad (i.e. \forall y \in F y \leq_i x)$

Remark

 $dim_{DM}(K) = dim(\mathscr{I}(K))$, where $\mathscr{I}(K)$ is the inclusion poset of K.

Example : the path abcd : \leq_1 : $a \leq_1 b \leq_1 c \leq_1 d$ \leq_2 : $d \leq_2 c \leq_2 b \leq_2 a$

Example : Empty triangle & empty rectangle complexes

Dushnik-Miller dimension

Dushnik-Miller dimension of a simplicial complex

 $\dim_{DM}(K) = \text{Min } k \text{ s.t. } \exists \leq_1 \dots \leq_k \text{ total orders on } V(K) \text{ s.t.} \\ \forall F \in K, \forall x \in V(K), \exists i \text{ s.t. } F \leq_i x \qquad (i.e. \forall y \in F y \leq_i x)$

Remark

 $dim_{DM}(K) = dim(\mathscr{I}(K))$, where $\mathscr{I}(K)$ is the inclusion poset of K.

Example : the path abcd : \leq_1 : $a \leq_1 b \leq_1 c \leq_1 d$

 $\leq_2 : \quad d \leq_2 c \leq_2 b \leq_2 a$

Example : Empty triangle & empty rectangle complexes

Theorem (Scarf '73, Ossona de Mendez '99)

Simplicial complexes of DM-dimension d linearly embed in \mathbb{R}^{d-1} .

Intersection btw 2 boxes \Rightarrow 1-dimensional

Intersection btw 2 boxes \Rightarrow 1-dimensional

 \leq_1 : follow e_1 , and $-e_2$ if = A B C D E F G H

Intersection btw 2 boxes \Rightarrow 1-dimensional

 \leq_1 : follow e_1 , and $-e_2$ if = A B C D E F G H \leq_2 : follow e_2 , and $-e_1$ if = H D E A F G C B

Intersection btw 2 boxes \Rightarrow 1-dimensional

 $\leq_{1} :$ follow e_{1} , and $-e_{2}$ if = A B C D E F G H $\leq_{2} :$ follow e_{2} , and $-e_{1}$ if = H D E A F G C B

 \leq_3 : Any total order s.t.

 \wedge Acyclicity of \leq_3 is not trivial !

Intersection btw 2 boxes \Rightarrow 1-dimensional

 $\leq_{1} :$ follow e_{1} , and $-e_{2}$ if = A B C D E F G H $\leq_{2} :$ follow e_{2} , and $-e_{1}$ if = H D E A F G C B

Intersection btw 2 boxes \Rightarrow 1-dimensional

 \leq_1 : follow e_1 , and \leq_3 if = A B C D E F G H \leq_2 : follow e_2 , and \leq_3 if = H D E A F G C B

 \wedge Acyclicity of \leq_3 is not trivial !

$\forall \{X\} \in K(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X \leq_i B$

 $\forall \{X\} \in \mathcal{K}(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X \leq_i B$ If the corner of B is in Region(X) : $X \leq_1 B$

 $\forall \{X\} \in K(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X \leq_i B$ If the corner of B is in Region(X) : $X \leq_2 B$

 $\forall \{X\} \in K(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X \leq_i B$ If the corner of B is in Region(X): $X \leq_3 B$

$\forall \{X, Y\} \in K(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X, Y \leq_i B$

 $\forall \{X, Y\} \in \mathcal{K}(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X, Y \leq_i B$ If the corner of B is in Region(X) : $X, Y \leq_1 B$

 $\forall \{X, Y\} \in K(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X, Y \leq_i B$ If the corner of B is in Region(X) : $X, Y \leq_2 B$

 $\forall \{X, Y\} \in \mathcal{K}(\mathscr{B}) \quad \forall B \in \mathscr{B} \quad \exists i \quad \text{s.t.} \quad X, Y \leq_i B$ If the corner of B is in Region(X) : $X, Y \leq_3 B$

 \leq_4 : Any total order s.t. $Y \in \text{Region}(X) \Rightarrow x \leq_4 y$

- \leq_4 : Any total order s.t. $Y \in \text{Region}(X) \Rightarrow x \leq_4 y$
- \leq_1 : follow e_1 , and \leq_4 if =
- \leq_2 : follow e_2 , and \leq_4 if =
- \leq_3 : follow e_3 , and \leq_4 if =

 $\underline{\wedge} \leq_4$ is not well defined $\underline{\wedge}$

X ≤₄ Y

$\underline{\wedge}$ \leq_4 is not well defined $\underline{\wedge}$

 $X \leq_4 Y \leq_4 Z$

 $X \leq_4 Y \leq_4 Z \leq_4 X$

Main Theorem

Theorem

Any contact system \mathscr{B} of *d*-dimensional boxes in \mathbb{R}^d with at most d+1 boxes intersecting at a point verifies $\dim_{DM}(K(\mathscr{B})) \leq d+1$.

Main Theorem

Theorem

Any contact system \mathscr{B} of *d*-dimensional boxes in \mathbb{R}^d with at most d+1 boxes intersecting at a point verifies $\dim_{DM}(\mathcal{K}(\mathscr{B})) \leq d+1$.

Theorem

For any tiling \mathscr{T} of \mathbb{R}^d with *d*-dimensional boxes, if \mathscr{T} has only 2d infinite boxes and if at most d+1 boxes intersect at a point, then \mathscr{T} verifies $dim_{DM}(\mathcal{K}(\mathscr{T})) \leq d+1$.

Main Theorem

Theorem

Any contact system \mathscr{B} of *d*-dimensional boxes in \mathbb{R}^d with at most d+1 boxes intersecting at a point verifies $\dim_{DM}(\mathcal{K}(\mathscr{B})) \leq d+1$.

Theorem

For any tiling \mathscr{T} of \mathbb{R}^d with *d*-dimensional boxes, if \mathscr{T} has only 2*d* infinite boxes and if at most d+1 boxes intersect at a point, then \mathscr{T} verifies $dim_{DM}(\mathcal{K}(\mathscr{T})) \leq d+1$.

A tiling in \mathbb{R}^d with only 2*d* infinite boxes and with at most d+1 boxes at each point is a **proper** *d*-tiling.

Theorem

A *d*-tiling with 2d infinite boxes is proper \iff any 2 intersecting boxes intresect on a (d-1)-box.

A tiling in \mathbb{R}^d with only 2*d* infinite boxes and with at most d+1 boxes at each point is a **proper** *d*-tiling.

Theorem

A *d*-tiling with 2*d* infinite boxes is proper

- \iff any 2 intersecting boxes intresect on a (d-1)-box.
- \iff any k intersecting boxes intersect on a (d+1-k) box.

A tiling in \mathbb{R}^d with only 2*d* infinite boxes and with at most d+1 boxes at each point is a **proper** *d*-tiling.

Theorem

A *d*-tiling with 2d infinite boxes is proper \iff any 2 intersecting boxes intresect on a (d-1)-box.

 \iff any k intersecting boxes intersect on a (d+1-k) - box.

(⇐) follows from Graham-Pollak's Theorem.

A tiling in \mathbb{R}^d with only 2*d* infinite boxes and with at most d+1 boxes at each point is a **proper** *d*-tiling.

Theorem

A *d*-tiling with 2*d* infinite boxes is proper \iff any 2 intersecting boxes intresect on a (d-1)-box. \iff any *k* intersecting boxes intersect on a (d+1-k)-box.

(⇐) follows from Graham-Pollak's Theorem.

Two sides s and s' are **connected** if there is a sequence $s = s_1, \ldots, s_t = s'$ s.t. $s_i \cap s_{i+1}$ is a (d-1)-box.

Lemma

Every maximal set of connected sides induces a (d-1)-box.

1. Forget the 2*d* infinite boxes.

- 1. Forget the 2*d* infinite boxes.
- 2. Consider the highest box X in \leq_{d+1} & Remove it.

1. Forget the 2*d* infinite boxes.

2. Consider the highest box X in \leq_{d+1} & Remove it.

- 1. Forget the 2*d* infinite boxes.
- 2. Consider the highest box X in \leq_{d+1} & Remove it.
- 3. Prolong some boxes

- 1. Forget the 2*d* infinite boxes.
- 2. Consider the highest box X in \leq_{d+1} & Remove it.
- 3. Prolong some boxes

Open Problems

Question 1

For which contact systems \mathscr{C} of *d*-boxes, $\dim_{DM}(K(\mathscr{C})) \leq d+1$?

Open Problems

Question 1

For which contact systems \mathscr{C} of *d*-boxes, $\dim_{DM}(K(\mathscr{C})) \leq d+1$?

- ► There exists contact systems C such that at most d+1 boxes intersect at a point but such that dim_{DM}(K(C)) > d+1.
- ► There exists contact systems & such that the intersection of any k boxes is either empty or it has dimension d+1-k, and such that & is not contained in any proper d-tiling.

Question 1

For which contact systems \mathscr{C} of *d*-boxes, $\dim_{DM}(\mathcal{K}(\mathscr{C})) \leq d+1$?

- ► There exists contact systems C such that at most d+1 boxes intersect at a point but such that dim_{DM}(K(C)) > d+1.
- ► There exists contact systems & such that the intersection of any k boxes is either empty or it has dimension d+1-k, and such that & is not contained in any proper d-tiling.

Question 2

Given a contact systems \mathscr{C} such that the intersection of any k boxes is either empty or it has dimension d+1-k, does $dim_{DM}(K(\mathscr{C})) \leq d+1$.

More Open Problems

Theorem (Thomassen '84)

K is a clique complex such that $\dim_{DM}(K) \leq 3 \iff$ there exists a contact system \mathscr{C} in \mathbb{R}^2 with no 4 boxes intersecting and such that $K = K(\mathscr{C})$.

Question 3 : Does this holds ?

K is a clique complex such that $dim_{DM}(K) \le d+1 \iff$ there exists a contact system \mathscr{C} in \mathbb{R}^d with no (d+2) boxes intersecting and such that $K = K(\mathscr{C})$.

More Open Problems

Theorem (Thomassen '84)

K is a clique complex such that $\dim_{DM}(K) \leq 3 \iff$ there exists a contact system \mathscr{C} in \mathbb{R}^2 with no 4 boxes intersecting and such that $K = K(\mathscr{C})$.

Question 3 : Does this holds ?

K is a clique complex such that $dim_{DM}(K) \le d+1 \iff$ there exists a contact system \mathscr{C} in \mathbb{R}^d with no (d+2) boxes intersecting and such that $K = K(\mathscr{C})$.

Question 4 : How to generalize the following Theorem?

Theorem (Hartman et al. '91, and de Fraysseix et al. '94)

G is planar and bipartite \iff G admits a contact system with horizontal or vertical lines.