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A box B'in R? : [a1, by] x ... x [ag, bg].
dim(B) : number of non-trivial intervals [aj, b;].
Contact system 9 of boxes in RY
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Contact graph G(9A)

A graph with vertex set 2 and where there is an edge AB if and
only if boxes A and B intersect.

Contact complex K(28)

A simplicial complex with vertex set 2 and where F € 2 is a face if
and only if the boxes of F intersect.
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Dimension 1 and 2

In R : ~— — —_
K(%) = G(9B) is a path forest

In R? :

K = K(%) for some % with no

4 boxes intersection < K is / N

a cliqgue complex and embeds
in the plane.

Theorem (Thomassen '84) 1] ><

dimpm(G(2)) = dimpm (K (%)) <3



Dushnik-Miller dimension

Dushnik-Miller dimension of a simplicial complex

dimpp(K) = Min k s.t. 3<; ... <y total orders on V(K) s.t.
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Dushnik-Miller dimension of a simplicial complex

dimpp(K) = Min k s.t. 3<; ... <y total orders on V(K) s.t.
VFeK,Vxe V(K),3i st. F<ix (i.eVyeFy<;x)

Remark
dimpm(K) = dim(#(K)), where .#(K) is the inclusion poset of K.

Example : the path abcd :
<1: asib=sic=1d
<5 : C/SQCEQbSQa

Example : Empty triangle & empty rectangle complexes
Theorem (Scarf '73, Ossona de Mendez '99)

Simplicial complexes of DM-dimension d linearly embed in R~
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Construction in R?  (from Schnyder Woods by Zhang '10)

Intersection btw 2 boxes
i B = 1-dimensional
.c |
R G <i:
. follow e;, and if =
A ABCDEFGH
<5 :
b E H follow e, and if =
EE— — HDEAFGCB
| I
62 m |
€
: Any total order s.t. o N

A\ Acyclicity of <3 is not trivial ! BGHFI{C,EIDA
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|dea of the proof : pair {X, Y}

VIX,YIeK(8B) VvBe® 3i st X, Y<;B
If the corner of B is in Region(X) : X,Y =3B

=3
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<4 : Any total order s.t.
Y € Region(X) = x <4y
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<3 : follow e3, and <4 if =
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A =4 is not well defined A\

XS4YS4ZS4X
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Proof Ideas

A tiling in R with only 2d infinite boxes and with at most d +1
boxes at each point is a proper d-tiling.
Theorem

A d-tiling with 2d infinite boxes is proper
< any 2 intersecting boxes intresect on a (d—1)-box.
< any k intersecting boxes intersect on a (d +1- k) — box.

(<=) follows from Graham-Pollak’s Theorem.

Two sides s and s’ are connected if there is a sequence
s=81,...,5t =5 s.t. sinsj,1isa (d—1)-box.

Lemma

Every maximal set of connected sides induces a (d —1)-box.



1. Forget the 2d infinite boxes.
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Open Problems

Question 1
For which contact systems € of d-boxes, dimpy(K(€))<d+17

» There exists contact systems %€ such that at most d +1 boxes
intersect at a point but such that dimpp(K(€))>d+1.

» There exists contact systems € such that the intersection of
any k boxes is either empty or it has dimension d +1 -k, and
such that € is not contained in any proper d-tiling.

$

Given a contact systems € such that the intersection of any k
boxes is either empty or it has dimension d +1 -k, does
dimDM(K(Cg)) <d+1.

Question 2



More Open Problems

Theorem (Thomassen '84)

K is a clique complex such that dimpy(K) <3 < there exists a
contact system € in R? with no 4 boxes intersecting and such that
K =K(¥).

Question 3 : Does this holds ?

K is a clique complex such that dimpy/(K) <d+1 < there exists
a contact system € in R? with no (d +2) boxes intersecting and
such that K = K(¥).



More Open Problems

Theorem (Thomassen '84)

K is a clique complex such that dimpy(K) <3 < there exists a
contact system € in R? with no 4 boxes intersecting and such that
K =K(¥).

Question 3 : Does this holds 7

K is a clique complex such that dimpy/(K) <d+1 < there exists
a contact system € in R? with no (d +2) boxes intersecting and
such that K = K(¥).

Question 4 : How to generalize the following Theorem?

Theorem (Hartman et al. ‘91, and de Fraysseix et al. '94)

G is planar and bipartite < G admits a contact system with
horizontal or vertical lines.



